http://www.intuit.ru/department/hard...hsys/2/2.html:
Очевидно, что количество различных X1,X2,...........Xn n-разрядных чисел в позиционной двоичной системе есть 2n.
Допустим, что некоторая функция F(X1,X2,....Xn) задана на этих наборах и на каждом из них она принимает либо '0'-ое, либо '1'-ое значение.
Такую функцию называют функцией алгебры логики или переключательной функцией.
Чему равно число различных переключательных функций 'n' аргументов?
Т.к. функция на каждом наборе может принять значение '0' или '1', а всего различных наборов 2^n, то общее число различных функций 'n' аргументов есть: 2^2^n.
или "art of assembly language" ch2:
If you fix the number of input variables,
there are a finite number of unique boolean functions possible. For example, there
are only 16 unique boolean functions with two inputs